Archivo de la etiqueta: suma

Operaciones con calculadora. 2º curso de Educación Primaria



SUMAS

Si oprimimos en la calculadora las siguientes teclas: 25 + =, de forma continuada, ¿qué números aparecen?

En el ejercicio anterior, ¿cuántas veces habrá que oprimir la tecla = después del 25 para que aparezca en el visor el número 200?

¿Qué aparecerá en la pantalla si oprimimos 36 – 6 = = ? . ¿Cuántas veces habrá que oprimir la tecla = para que aparezca el número 0?

Realiza la suma 50 + 50 sin usar la tecla del 5.

Realiza la resta 37 – 15 sin usar la tecla del 5.

Si tienes que hacer con la calculadora 124 + 134 y no funciona la tecla del 4 ¿qué otras cuentas puedes hacer para obtener el resultado?.

Coloquen en el visor de la calculadora el número 123. ¿Qué harían para que aparezca el número 100 sin borrar?

Malena tecleó en la calculadora el número 24, pero se confundió y quería que apareciera el 124. ¿Qué puede hacer sin borrar todo para cambiarlo?

En la calculadora de Camilo quiero hacer 222 + 32 pero no funciona la tecla del 2. ¿Cómo puedo resolverlo sin usar esa tecla?


MULTIPLICACIONES Y DIVISIONES

Si oprimes en la calculadora 10 x = ¿Qué número aparece? ¿Cuántas veces habrá que oprimir la tecla = para que aparezca 1.000.000?

Si oprimes en la calculadora 25 : 5 = = ¿Qué número aparece?.

Si haces 3125 : 5 = = … ¿Cuántas veces hay que oprimir el = para que aparezca el 1?

Completar el número que falta y verificar con calculadora:

25 x ___ = 100 25 x ___ = 1.000 25 x ___ = 10.000 25 x____ = 100.000

Emplea la calculadora para calcular cuántos días has vivido. Igual con horas.


 

CÓMO ENSEÑAR LA SUMA Y LA RESTA DE FRACCIONES CON DISTINTO DENOMINADOR


Como ya sabemos, para sumar fracciones de distinto denominador, se las transforma previamente en fracciones equivalentes del mismo denominador y se las suma luego como fracciones del mismo denominador (se mantiene el mismo denominador y se suman los numeradores).

Se puede introducir la suma de fracciones de distinto numerador, de una forma lúdica, mediante figuras recortadas en cartulina.

Partimos de unas figuras básicas, similares a las siguientes, que corresponden a círculos divididos en variados números de partes iguales:

Circulos3

Supongamos que queremos sumar 1/3 + 2/6. Podemos razonar con ayuda de las siguientes figuras:

Circulos4

En definitiva, podemos ver que:

1/3 + 2/6 = 2/6 + 2/6 = 4/6


Podemos ver la siguiente lección, introducida en nuestro sitio web, para enseñar estos conceptos en el quinto curso de Educación Primaria.

Lección


Podemos ver la siguiente lección, introducida en nuestro sitio web, para enseñar estos conceptos en el sexto curso de Educación Primaria.

Lección


PROPIEDAD DISTRIBUTIVA DE LA MULTIPLICACIÓN RESPECTO A LA SUMA


LA PROPIEDAD DISTRIBUTIVA

Si una multiplicación nos resulte algo más difícil, podemos descomponerla en dos multiplicaciones más simples.

Distributiva2

En la imagen, la multiplicación de 6 x 3 la hemos descompuesto en las multiplicaciones de  2 x 3  y  4 x 3  que, sumadas dan el mismo resultado.

6 x 3 = (2 + 4) x 3 = (2 x 3) + (4 x 3)

Ésta es la propiedad distributiva de la multiplicación respecto a la suma.

PROPIEDAD DISTRIBUTIVA, APLICADA A NÚMEROS DE DOS CIFRAS

Podemos aplicar la propiedad distributiva a números de dos cifras:

Distributiva con Decenas

4 x 12 = 4 x (2 + 10) = (4 x 2) + (4 x 10) = 8 + 40 = 48

La propiedad distributiva constituye la base del procedimiento para multiplicar números de una cifra por números de dos cifras. Recordemos el procedimiento.:

Multi

Enseñando previamente la propiedad distributiva es muy fácil de enseñar este algoritmo de cálculo, este procedimiento de cálculo, de números de 2 cifras por números de 1 cifra, DE FORMA RAZONADA.

Como hemos visto, podemos descomponer 12 como 2 + 10 y aplicar la propiedad distributiva:

4 x 12 = 4 x (2 + 10) = (4 x 2) + (4 x 10) = 8 + 40 = 48

MultiDistri2

La siguiente imagen ejemplifica la multiplicación de números de dos cifras por números de una cifra, con llevada.

5 x 23 = (5 x 3) + (5 x 20) = 15 + 100 = 5 + 10 + 100

Distributiva con decenas2


EDUCACIÓN SECUNDARIA. CUADRADO DE UNA SUMA


CUADRADO DE UNA SUMA. VISIÓN GEOMÉTRICA

En la entrada anterior, usábamos esta imagen para ayudar a comprender la fórmula del cuadrado de una suma:

CuadradoSuma

Ahora introducimos otra aún más simple, utilizando sólo números, para complementarla:

CuadradoSumaNumeros