Archivo de la etiqueta: domino

JUEGO DE INTRODUCCIÓN A LA MULTIPLICACIÓN, A LAS TABLAS DE MULTIPLICAR Y A LAS PROPIEDADES DE LA MULTIPLICACIÓN


INTRODUCCIÓN A LA MULTIPLICACIÓN

Presentamos a continuación una versión más atractiva de nuestro juego de introducción a la multiplicación, anteriormente expuesto en:

https://matematicasprimariasecundaria.com/2018/11/03/juego-de-carrera-de-multiplicacion-de-rectangulos/

Partimos ahora de una cuadrícula sobre la que se sitúan tapones, en disposiciones rectangulares, correspondientes a fichas de dominó, representando multiplicaciones de números. Por ejemplo, las multiplicaciones de 4×3 ó 2×5:

Foto1

Las fichas de dominó están situadas de modo que no se ven las puntuaciones. Cada jugador, por turnos, coge una ficha cada vez y la muestra y pone en la cuadrícula los tapones correspondientes. Cuando ya no se pueden poner más, gana quién más tapones haya conseguido.

TABLA DE MULTIPLICAR. PROPIEDAD CONMUTATIVA

En esta versión del juego, se ayuda al alumno a aprender la tabla de multiplicar y también la propiedad conmutativa.

Se parte del conocimiento, verbalizado o intuitivo, de la propiedad conmutativa de la multiplicación, de modo que la disposición que se muestra ahora se considera equivalente a la anterior, habiéndose simplemente variado la disposición de las fichas de dominó:

Foto2.jpg

MULTIPLICACIÓN POR 0 Ó POR 1

Con este juego, también se introducen de modo natural la multiplicación por 0 y por 1.

Pues si una cantidad de la ficha está en blanco, la cantidad representada es 0. A la ficha (3,0), por ejemplo, le corresponde poner 3 filas de 0 tapones. O considerándola como la ficha (0,3), da lugar a 0  filas de 3 tapones. Es decir una multiplicación por 0, que origina 0 tapones.

O si en una ficha hay un 1 y también, por ejemplo, un 6, eso querrá decir que un factor es 1 y el otro es 6, el resultado es una línea de 6 tapones. Y que el resultado numérico de la multiplicación de 1×6 (o de 6×1) es 6.  

Foto3

PROPIEDAD DISTRIBUTIVA

Se puede ampliar el juego, introduciendo la propiedad distributiva, de modo que, por ejemplo, la ficha (4,6), que introduce la multiplicación de 4×6, pueda dar lugar a dos lineas, por ejemplo una de 1×6 y otra de 3×6. Pues 4 veces 6 es lo mismo que 1 vez 6 más 3 veces 6. O sea, 4×6 = 1×6 + 3×6.